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Abstract: This study proposes an adaptive learning framework for Big Data courses that dynamically generates 

personalized learning pathways by integrating multimodal knowledge representation with reinforcement learning. Traditional 

learning systems often fail to account for individual differences in knowledge states, cognitive traits, and learning preferences, 

leading to suboptimal educational outcomes. The proposed method addresses this gap by constructing a Multimodal 

Knowledge Graph (MMKG) that unifies diverse learning resources, including text, code, and visual materials, into a structured 

ontology. Dynamic learner profiles are built using Item Response Theory and clustering techniques to model knowledge 

mastery and cognitive styles, while an adaptation engine employs graph neural networks and reinforcement learning to 

optimize learning paths in real-time. The engine minimizes cognitive load and maximizes knowledge gain by dynamically 

adjusting resource assignments and sequencing based on continuous feedback. Furthermore, multimodal resource scheduling 

ensures that learners receive content tailored to their preferred modalities, such as visual diagrams for visual learners or 

interactive code sandboxes for kinesthetic learners. The novelty of this work lies in the synergistic integration of MMKG with 

reinforcement learning, enhanced by explainable AI mechanisms that provide transparent decision-making processes and 

interpretable learning path recommendations. The framework incorporates advanced cold-start mitigation strategies through 

systematic transfer learning and comprehensive ethical safeguards including differential privacy and bias auditing 

mechanisms. Experimental validation demonstrates significant improvements in learning efficiency and engagement 

compared to conventional methods, highlighting the framework's potential for scalable and adaptive education in complex 

domains like Big Data. 

Keywords: Adaptive Learning Path, Multimodal Knowledge Graph, Reinforcement Learning, Explainable AI, Transfer 

Learning 

 

1. Introduction 

The rapid evolution of big data technologies has created 

an urgent need for effective educational frameworks that 

can adapt to diverse learner needs and rapidly changing 

domain knowledge. Traditional e-learning platforms often 

employ static content sequencing [1], which fails to 

account for individual differences in prior knowledge, 

cognitive load tolerance, and learning modality 

preferences. While adaptive learning systems have shown 

promise in personalizing education [2], most existing 

approaches either focus narrowly on knowledge tracing [3] 

or modality-specific optimization [4], neglecting the 

interplay between cognitive, pedagogical, and 

technological factors. 

Recent advances in knowledge graph-based education 

[5] and multimodal learning [6] provide new opportunities 

for personalized learning. Knowledge graphs offer 

structured representations of domain concepts and their 

relationships, enabling systematic navigation through 

complex subjects like big data. Multimodal approaches, 

on the other hand, allow learners to engage with content 

through their preferred sensory channels, such as visual, 

auditory, or interactive modalities. However, integrating 

these two paradigms remains challenging due to the lack 

of frameworks that jointly optimize knowledge 

progression and modality selection under cognitive 

constraints [7]. 

We propose a novel adaptive learning engine that 

bridges this gap by combining multimodal knowledge 

graphs with reinforcement learning. The system 

dynamically constructs personalized learning pathways by 

modeling three key dimensions: (1) the learner’s 

knowledge state, inferred through continuous assessment 

and interaction patterns; (2) cognitive and modality 

preferences, derived from behavioral data and self-

https://www.researchgate.net/profile/Ouadoud-Mohammed-2/publication/350328024_Overview_of_E-Learning_Platforms_for_Teaching_and_Learning/links/605a570ba6fdccbfea002e95/Overview-of-E-Learning-Platforms-for-Teaching-and-Learning.pdf
https://arxiv.org/pdf/2402.01666
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https://www.frontiersin.org/articles/10.3389/fpsyg.2018.01538/pdf
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reported profiles; and (3) the intrinsic structure of the 

subject matter, encoded as a multimodal knowledge graph. 

Unlike prior work that treats these dimensions 

independently [8], our approach jointly optimizes them 

using graph neural networks (GNNs) [9] and 

reinforcement learning [10]. This enables the system to 

recommend not only what to learn next but also how to 

learn it—for instance, suggesting an interactive coding 

exercise for a kinesthetic learner struggling with 

MapReduce concepts, or a visual flowchart for a visual 

learner grappling with Spark’s execution model. 

The key contributions of this work are fourfold. First, 

we introduce a cognitive-modality-knowledge triad model 

that unifies knowledge tracing, modality adaptation, and 

cognitive load management into a single reinforcement 

learning framework with explainable decision-making 

capabilities. Second, we develop a dynamic graph neural 

network architecture that propagates learner states across 

the multimodal knowledge graph, enabling fine-grained 

personalization at the concept-modality level. Third, we 

implement comprehensive cold-start mitigation strategies 

through systematic transfer learning mechanisms that 

leverage cross-domain knowledge and pre-trained 

embeddings. Fourth, we empirically validate the system's 

effectiveness through a large-scale study involving big 

data courses, demonstrating significant improvements in 

learning outcomes and engagement compared to 

conventional adaptive platforms [11], while ensuring 

ethical compliance through differential privacy and bias 

auditing mechanisms. 

The remainder of this paper is organized as follows: 

Section 2 reviews related work in adaptive learning, 

knowledge graphs, and cognitive modeling. Section 3 

formalizes the problem and introduces key concepts. 

Section 4 details the proposed adaptive learning engine, 

including the explainability framework and cold-start 

mitigation strategies. Sections 5 and 6 present the 

experimental setup and results. Finally, Section 7 

discusses implications and future directions. 

2. Related Work 

The development of personalized learning systems has 

evolved through several key research directions, each 

addressing different aspects of adaptive education. This 

section organizes these directions into three 

interconnected themes: knowledge graph-based learning, 

cognitive-aware adaptation, and multimodal resource 

integration. 

2.1 Knowledge Graph-Based Learning 

Systems 

Knowledge graphs have emerged as a powerful tool for 

structuring educational content, enabling systems to 

model relationships between concepts and recommend 

personalized learning paths. Early work in this area 

focused on ontology-based representations of domain 

knowledge [12], where concepts were linked 

hierarchically to support navigation. More recent 

approaches incorporate dynamic graph structures that 

evolve with learner interactions [13]. For example, some 

systems use graph embeddings to infer latent relationships 

between topics, improving path recommendations [14]. 

However, these methods often treat knowledge 

progression as a static sequence, neglecting individual 

differences in learning pace and cognitive load. 

2.2 Cognitive and Behavioral Adaptation 

Cognitive modeling plays a critical role in adaptive 

learning, as it enables systems to tailor content delivery 

based on a learner’s cognitive state. Item Response Theory 

(IRT) has been widely adopted to estimate knowledge 

mastery [3], while clustering techniques help identify 

learning styles [15]. Some systems further incorporate 

real-time cognitive load assessment, such as through eye-

tracking or self-reported measures [7]. Despite these 

advances, existing methods often operate in isolation—for 

instance, optimizing for knowledge gain without 

considering cognitive overload [2]. This limitation 

motivates the need for integrated frameworks that balance 

multiple cognitive factors. 

2.3 Multimodal Learning Resource 

Integration 

The rise of multimodal learning has introduced new 

opportunities for personalization, as learners exhibit 

distinct preferences for visual, textual, or interactive 

content. Recent studies highlight the benefits of modality-

aware recommendations, where resources are matched to 

a learner’s sensory preferences [16]. For example, visual 

learners may benefit from diagrams, while kinesthetic 

learners perform better with hands-on coding exercises 

[17]. However, most current systems treat modality 

selection as a secondary concern, focusing primarily on 

knowledge sequencing rather than optimizing the form of 

content delivery. 

The proposed method addresses these gaps by unifying 

knowledge graph-based progression, cognitive-aware 

adaptation, and multimodal resource scheduling into a 

single reinforcement learning framework with explainable 

AI capabilities. Unlike prior works that optimize these 

dimensions independently, our approach dynamically 

adjusts learning paths based on real-time feedback, 

ensuring that both what is learned and how it is learned 

align with the learner's evolving needs. This integration 

represents a key advancement over existing systems, 

which either lack fine-grained personalization or fail to 

account for the interplay between cognitive load and 

modality preferences. Furthermore, our framework 

incorporates transparency mechanisms that allow learners 

https://ieeexplore.ieee.org/iel7/6287639/6514899/08362657.pdf
https://www.nature.com/articles/s43586-024-00294-7
https://www.jair.org/index.php/jair/article/download/10166/24110/
https://ieeexplore.ieee.org/abstract/document/10624590/
https://www.mdpi.com/2079-9292/13/13/2537/pdf
https://theses.hal.science/tel-04674984/file/These_UTC_Qing_Tang.pdf
https://www.fi.muni.cz/~xpelanek/publications/umuai-overview.pdf
https://link.springer.com/article/10.1007/s44366-025-0055-x
https://books.google.com/books?hl=en&lr=&id=mFJe8ZnAb3EC&oi=fnd&pg=PR5&dq=cognitive+load+theory&ots=8ydrHbD4X1&sig=Jzuj7HbvRtVpWIAhe4mHtb2j0Zw
https://arxiv.org/pdf/2402.01666
https://ai-es.org/index.php/aies/article/download/4/4
https://dl.acm.org/doi/abs/10.1145/3691720.3691779


Scientific Navigation, Vol.1 No.1 (2025)                                                        

 

5 

 

Article                                                                                                                                               
and educators to understand the reasoning behind path 

recommendations, addressing the black-box limitations of 

traditional adaptive systems. 

3. Background and Preliminaries 

To establish the theoretical foundation for our adaptive 

learning framework, this section introduces key concepts 

and methodologies that underpin our approach. The 

integration of multimodal knowledge representation with 

personalized learning requires understanding several 

interconnected domains, ranging from knowledge graph 

construction to cognitive modeling techniques. 

3.1 Knowledge Representation in Learning 

Systems 

Modern educational systems increasingly rely on 

structured knowledge representation to organize domain 

content and facilitate adaptive navigation. The concept of 

knowledge graphs originated from semantic networks [18], 

where entities and their relationships form a directed graph 

structure. In educational contexts, knowledge graphs 

typically represent concepts as nodes and prerequisite 

relationships as edges, enabling systematic traversal of 

learning materials [19]. For instance, in big data courses, 

fundamental concepts like “MapReduce” might serve as 

prerequisites for more advanced topics like “Spark 

optimization.” 

The strength of knowledge graphs lies in their ability to 

capture both hierarchical and non-hierarchical 

relationships between concepts. While traditional 

curriculum design follows linear sequences, real-world 

learning often requires non-sequential jumps between 

related topics [20]. This property makes knowledge graphs 

particularly suitable for complex domains like big data, 

where concepts frequently intersect across different 

paradigms (e.g., batch processing vs. stream processing). 

3.2 Multimodal Learning Theory 

Human learning occurs through multiple sensory 

channels, with individuals exhibiting distinct preferences 

for visual, auditory, or kinesthetic modalities [21]. The 

Cognitive Theory of Multimedia Learning [22] posits that 

combining multiple representation formats can enhance 

understanding when properly managed. For example, 

explaining a distributed algorithm through both visual 

flowcharts and interactive simulations may lead to better 

retention than using either modality alone. 

However, the effectiveness of multimodal learning 

depends on cognitive load management. The split-

attention effect occurs when learners must mentally 

integrate information from separate sources, potentially 

overwhelming working memory [7]. Our framework 

addresses this by dynamically selecting modality 

combinations that minimize extraneous cognitive load 

while maximizing learning gains. 

3.3 Learner Modeling Techniques 

Accurate modeling of learner states forms the basis for 

effective personalization. Item Response Theory (IRT) 

provides a probabilistic framework for estimating latent 

knowledge states from observed responses to assessment 

items [23]. The three-parameter IRT model describes the 

probability of a correct response as: 

𝑃(𝜃) = 𝑐 +
1 − 𝑐

1 + 𝑒−𝑎(𝜃−𝑏)
     (1) 

where 𝜃  represents learner ability, 𝑎  denotes item 

discrimination, 𝑏 indicates item difficulty, and 𝑐 accounts 

for guessing probability. 

Beyond knowledge states, learning style models 

categorize individuals based on their preferred 

information processing approaches. The Felder-Silverman 

model [24] identifies four dimensions: active/reflective, 

sensing/intuitive, visual/verbal, and sequential/global. 

These dimensions influence how learners interact with 

different content modalities and sequencing strategies. 

3.4 Reinforcement Learning in Education 

Reinforcement learning (RL) provides a natural 

framework for optimizing sequential decision-making in 

educational contexts [25]. The standard RL formulation 

models the learning process as a Markov Decision Process 

(MDP) with states 𝑠𝑡 , actions 𝑎𝑡 , rewards 𝑟𝑡 , and 

transition dynamics 𝑃(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡) . In adaptive learning 

systems, states typically represent learner knowledge 

profiles, actions correspond to content recommendations, 

and rewards reflect learning progress metrics. 

Policy gradient methods have shown particular promise 

in educational RL due to their ability to handle large, 

continuous state spaces [26]. These methods directly 

optimize a parameterized policy 𝜋𝜃(𝑎|𝑠)  using gradient 

ascent on the expected return: 

∇𝜃𝐽(𝜃) = 𝔼𝜏∼𝜋𝜃
[∑ ∇𝜃

𝑇

𝑡=0

log𝜋𝜃(𝑎𝑡|𝑠𝑡)𝑅(𝜏)]      (2) 

where 𝜏  represents trajectories and 𝑅(𝜏)  denotes the 

cumulative reward. 

The combination of these foundational elements—

structured knowledge representation, multimodal learning 

principles, cognitive modeling, and reinforcement 

learning—enables the development of sophisticated 

adaptive systems that can address the complex challenges 

of big data education. Our framework builds upon these 

concepts while introducing novel integrations to overcome 

limitations of existing approaches. 

https://dl.acm.org/doi/abs/10.5555/541921
https://ieeexplore.ieee.org/iel7/6287639/6514899/08362657.pdf
https://dergipark.org.tr/en/download/article-file/3359862
https://files.eric.ed.gov/fulltext/EJ1288572.pdf
https://lerenviapopulariseren.wordpress.com/wp-content/uploads/2014/09/mayer-r-e-2005-cognitive-theory-of-multimedia-learning-the-cambridge-handbook-of-multimedia-learning-31-48.pdf
https://books.google.com/books?hl=en&lr=&id=mFJe8ZnAb3EC&oi=fnd&pg=PR5&dq=Cognitive+load+theory&ots=8ydrHbD42-&sig=tb3T22J9iVBzZhim9fr7MDID-D0
https://www.scielo.br/j/prc/a/pPgSwYTLftjWFGFrwmSPNsB/?format=html
http://117.202.29.23:8080/jspui/bitstream/1/297/1/LEARNING%20AND%20TEACHING%20STYLES%20in%20Enginnering%20Education.pdf
https://www.mdpi.com/2227-9709/10/3/74
https://proceedings.neurips.cc/paper_files/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
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4. Adaptive Learning Engine with 
Multimodal Knowledge Graphs 

The proposed adaptive learning engine integrates 

multimodal knowledge representation with reinforcement 

learning to generate personalized learning pathways. The 

system architecture consists of three core components: (1) 

a multimodal knowledge graph that structures domain 

concepts and associated resources, (2) a dynamic learner 

profiling module that tracks cognitive states and 

preferences, and (3) a reinforcement learning-based 

adaptation engine that optimizes learning paths in real-

time. Additionally, the framework incorporates an 

explainability module that provides transparent decision-

making processes and a comprehensive cold-start 

mitigation system that leverages transfer learning 

techniques. 

 

Figure 1. Overall System Architecture with Proposed 

Adaptation Engine 

4.1 Utilization of Multimodal Knowledge 

Graphs in Adaptive Learning 

The multimodal knowledge graph (MMKG) serves as 

the foundation for content organization and path 

generation. Unlike conventional knowledge graphs that 

focus solely on conceptual relationships [27], our MMKG 

encodes both semantic connections between concepts and 

their associated learning resources across multiple 

modalities. Each concept node 𝑐𝑖 ∈ 𝐶 connects to various 

resource nodes 𝑟𝑗 ∈ 𝑅  through modality-specific edges 

𝑒𝑖𝑗
𝑚, where 𝑚 ∈ {𝑡𝑒𝑥𝑡, 𝑣𝑖𝑑𝑒𝑜, 𝑐𝑜𝑑𝑒, 𝑑𝑖𝑎𝑔𝑟𝑎𝑚} represents 

the resource type. 

The graph structure evolves dynamically based on 

learner interactions. Edge weights 𝑤𝑖𝑗
𝑚 between concepts 

and resources adjust according to empirical effectiveness 

metrics: 

𝑤𝑖𝑗
𝑚 = 𝛼 ⋅ MasteryGain

𝑖𝑗
𝑚 + (1 − 𝛼)

⋅ Engagement
𝑖𝑗
𝑚     (3) 

where MasteryGain
𝑖𝑗
𝑚

  measures knowledge 

improvement after using resource 𝑟𝑗  for concept 𝑐𝑖  in 

modality 𝑚 , and Engagement
𝑖𝑗
𝑚  captures interaction 

duration and frequency. The parameter 𝛼 ∈ [0,1] balances 

pedagogical effectiveness against learner engagement. 

Concept relationships follow a dual representation 

scheme. Explicit prerequisite edges 𝑒𝑘𝑙
𝑝

 between concepts 

𝑐𝑘  and 𝑐𝑙  derive from domain expertise, while latent 

relationship edges 𝑒𝑘𝑙
𝑙   emerge through graph neural 

network propagation: 

𝑒𝑘𝑙
𝑙 = 𝜎(𝑊 ⋅ [ℎ𝑘| |ℎ𝑙])     (4) 

where ℎ𝑘  and ℎ𝑙  are concept embeddings learned via 

GNN message passing, 𝑊  denotes a learnable weight 

matrix, and 𝜎 represents the sigmoid activation function. 

This hybrid approach captures both curriculum-defined 

dependencies and empirically observed learning patterns. 

4.2 Design and Functionality of the 

Adaptation Engine 

The adaptation engine employs a hierarchical 

reinforcement learning framework to optimize learning 

paths. The high-level policy 𝜋ℎ  selects target concepts 

based on the learner’s knowledge state and cognitive 

profile, while the low-level policy 𝜋𝑙 determines optimal 

modalities and specific resources for each concept. 

The state space 𝑆𝑡  at time 𝑡  comprises: - Knowledge 

vector 𝐾𝑡 ∈ ℝ|𝐶|  from IRT estimates - Cognitive load 

measurement 𝐿𝑡 ∈ [0,1]  - Modality preference vector 

𝑀𝑡 ∈ ℝ4 - Current concept context 𝑐𝑡 ∈ 𝐶 

The action space includes concept selection 𝑎ℎ ∈ 𝐶 for 

𝜋ℎ and modality-resource pairs 𝑎𝑙 ∈ 𝑅 for 𝜋𝑙. The reward 

function combines multiple optimization objectives: 

𝑅𝑡 = 𝛽1𝛥𝐾𝑡 + 𝛽2(1 − 𝐿𝑡) + 𝛽3ModalityMatch
𝑡

− 𝛽4PathLength
𝑡
     (5) 

where 𝛥𝐾𝑡  measures knowledge gain, 𝐿𝑡  represents 

normalized cognitive load, ModalityMatch
𝑡
  quantifies 

alignment with preferred modalities, and PathLength
𝑡
 

penalizes inefficient navigation. 

The GNN-based pathfinding module processes the 

MMKG to generate candidate learning sequences. For 

each candidate path 𝑃 = (𝑐1, . . . , 𝑐𝑛), the system computes 

a composite score: 

Score(𝑃) = ∑ 𝛾𝑖−1

𝑛

𝑖=1

(Mastery(𝑐𝑖)

+ 𝜆ModalityFit(𝑐𝑖))     (6) 

where 𝛾  discounts future concepts, Mastery(𝑐𝑖) 

estimates the likelihood of mastering 𝑐𝑖  given current 

knowledge, and ModalityFit(𝑐𝑖)  measures resource 

suitability for the learner’s profile. 

https://ieeexplore.ieee.org/abstract/document/10624590/
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4.3 Multimodal Resource Scheduling and 

Delivery 

The system implements a two-stage resource selection 

process that first filters by cognitive constraints then 

optimizes for modality preferences. For each target 

concept 𝑐𝑡 , the available resource set 𝑅𝑡  undergoes 

cognitive load screening: 

𝑅𝑡′ = {𝑟𝑗
𝑚 ∈ 𝑅𝑡|𝐿𝑒𝑠𝑡(𝑟𝑗

𝑚) ≤ 𝐿𝑚𝑎𝑥 − 𝐿𝑐𝑢𝑟𝑟}     (7) 

where 𝐿𝑒𝑠𝑡(𝑟𝑗
𝑚) predicts the cognitive load of resource 

𝑟𝑗
𝑚, 𝐿𝑚𝑎𝑥 represents the learner’s maximum tolerable load, 

and 𝐿𝑐𝑢𝑟𝑟   tracks accumulated load from previous 

activities. 

The modality scheduler then applies a weighted multi-

armed bandit algorithm to select resources from 𝑅𝑡′. The 

selection probability for modality 𝑚 follows: 

𝑃(𝑚) =
𝑒𝜂𝑄𝑚+𝜌𝑀𝑚

∑ 𝑒𝜂𝑄𝑚′+𝜌𝑀𝑚′
𝑚′

     (8) 

where 𝑄𝑚  tracks the empirical effectiveness of 

modality 𝑚 for similar learners, 𝑀𝑚 represents the current 

learner’s preference score, and parameters 𝜂, 𝜌  control 

exploration-exploitation tradeoffs. 

For visual learners exhibiting high cognitive load, the 

system might reduce animation-heavy resources while 

maintaining diagrammatic representations. Conversely, 

kinesthetic learners receive more interactive coding 

exercises when cognitive capacity permits. This dynamic 

balancing ensures optimal knowledge acquisition without 

exceeding individual cognitive limits. 

 

Figure 2. Detailed View of the Adaptation Engine 

The complete adaptation loop operates as follows: (1) 

The GNN processes MMKG and learner state to generate 

candidate paths, (2) The RL agent selects the optimal path 

and resources, (3) The learner interacts with recommended 

content, (4) The system updates all models based on 

interaction outcomes, and (5) The process repeats with 

adjusted parameters. This closed-loop adaptation enables 

continuous refinement of learning pathways based on real-

time performance and engagement data. 

4.4 Explainability and Interpretability 

Framework 

To address the black-box limitations identified by 

reviewers, we introduce a comprehensive explainability 

framework that provides transparent insights into the 

system's decision-making processes. The framework 

operates at three levels: concept-level path reasoning, 

modality-level selection attribution, and learner-level 

adaptation explanations. 

The concept-level explainability module generates path 

rationales using attention mechanisms over the knowledge 

graph. For each recommended concept 𝑐𝑖 , the system 

computes attention weights 𝛼𝑖𝑗 over prerequisite concepts 

𝑐𝑗： 

α𝑖𝑗 =
exp(𝑓att(ℎ𝑖,ℎ𝑗))

∑𝑘 exp(𝑓att(ℎ𝑖,ℎ𝑘))
 (9) 

where  𝑓𝑎𝑡𝑡 is a learned attention function and ℎ𝑖 , ℎ𝑗 are 

concept embeddings. These weights generate natural 

language explanations such as "MapReduce is 

recommended because you have mastered distributed file 

systems (α=0.7) and basic parallel processing (α=0.3)." 

The modality-level attribution system employs SHAP 

(SHapley Additive exPlanations) values to explain 

resource selection decisions. For each modality choice, the 

system computes feature contributions: 

ϕ𝑚 = ∑
|𝐹|!

|𝑆|! (|𝐹| − |𝑆| − 1)!
𝑆⊆𝐹∖{m}

\𝑏𝑖𝑔[𝑣(𝑆 ∪ {m}) − 𝑣(𝑆)\𝑏𝑖𝑔]  (10) 

where 𝐹 represents the feature set (learner preferences, 

cognitive state, past performance),𝑆 is a subset of features, 

and 𝑣(𝑆) is the value function representing expected 

learning gain. This provides explanations like "Visual 

diagrams were selected because your visual learning 

preference (φ=0.4) and current cognitive load (φ=0.3) 

favor this modality." 

The learner-level adaptation explanations utilize 

concept activation vectors to show how the system's 

understanding of the learner evolves. The system 

maintains a learner representation 𝐿𝑡 that is updated after 

each interaction: 

𝐿𝑡+1 = 𝐿𝑡 + γ ⋅ ∇𝐿𝑡
log π ( 𝑎𝑡 ∣∣ 𝑠𝑡 , 𝐿𝑡 )    (11) 

  where 𝛾   is a learning rate and the gradient captures 

how the learner's profile should be adjusted based on 

observed behavior. Visualization tools display these 

changes as "Your profile has been updated: increased 

kinesthetic preference (+0.2), improved MapReduce 

mastery (+0.4)." 

4.5 Cold-Start Mitigation via Transfer 

Learning 

To address the cold-start problem for new learners, we 

implement a systematic transfer learning framework that 

leverages knowledge from existing learners and pre-

trained models. The transfer mechanism operates at three 

levels: parameter transfer, feature transfer, and experience 
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transfer. 

Parameter Transfer: The system maintains a set of pre-

trained policy networks 𝜋(1), 𝜋(2), … , 𝜋(𝐾)  trained on 

different learner populations. For a new learner lnew, we 

initialize their policy by weighted combination: 

π0
(new)

= ∑ 𝑤𝑘π(𝑘)𝐾
𝑘=1  (12) 

where weights wk are determined by similarity between 

lnew 's initial profile and the centroid of population k.  

 The similarity is computed using cosine distance over 

demographic and initial assessment features. 

Feature Transfer: Pre-trained concept embeddings from 

large-scale educational datasets are transferred to initialize 

the knowledge graph. We use a domain adaptation 

technique to align embeddings across different 

educational contexts: 

ℎ𝑖
target

= 𝑊adaptℎ𝑖
source + 𝑏adapt (13) 

where hsourcei are embeddings from the source domain 

(e.g., general computer science courses) and 

Wadapt, badapt are learned transformation parameters that 

adapt them to the target domain (big data courses). 

Experience Transfer: The system maintains a replay 

buffer of successful learning trajectories from similar 

learners. For cold-start scenarios, the policy is initially 

trained on these transferred experiences before 

incorporating the new learner's interactions: 

𝐿transfer = (𝑠, 𝑎, 𝑟, 𝑠′)

∼ 𝐷smlr [(𝑟 + γ max
𝑎′

𝑄 (𝑠′, 𝑎′)

− 𝑄(𝑠, 𝑎))

2

]                                  (14) 

 

where Dsimilar contains experiences from learners with 

similar profiles, and Q  represents the action-value 

function. 

The transfer learning system continuously monitors 

convergence metrics to determine when to transition from 

transferred knowledge to learner-specific adaptation. 

Convergence is measured by the stability of policy updates: 

Convergence𝑡 =
1

|Θ|
∑

|θ𝑡−θ𝑡−1|

|θ𝑡−1|+ϵθ∈Θ  (15) 

where Θ  represents the policy parameters and  ϵ  is a 

small constant for numerical stability. When 

Convergencet <  for consecutive time steps, the system 

transitions to full personalization mode. 

Empirical evaluation shows that transfer learning 

reduces the initial adaptation period from an average of 

17.2 minutes to 6.8 minutes, while maintaining 

comparable final performance. The system achieves 85% 

of optimal performance within the first 10 interactions, 

compared to 45% without transfer learning. 

5. Experimental Setup 

5.1 Dataset and Participants 

The evaluation employs a dataset collected from 120 

undergraduate Computer Science students enrolled in a 

Big Data course at a major university. Participants were 

randomly assigned to either the experimental group (using 

the MMKG-driven adaptive system) or the control group 

(following a fixed MOOC sequence). The dataset includes: 

5.1.1.Pre-test and post-test scores measuring conceptual 

understanding across 15 core Big Data topics   

5.1.2.Interaction logs capturing detailed behavioral 

data 

(1)Video playback actions (pauses, replays, speed 

changes) 

(2)Knowledge graph node visitation sequences 

(3)Code submission attempts and debugging time 

(4)Resource modality selection patterns 

5.1.3.Physiological measures: 

(1)Pupil dilation metrics captured via Tobii Pro eye-

tracking glasses [28] 

 

(2)NASA-TLX cognitive load scores collected at 15-

minute intervals [29] 

5.1.4.Subjective feedback: 

(1)System Usability Scale (SUS) responses [30] 

(2)Path satisfaction ratings on a 5-point Likert scale 

The course content covers fundamental Big Data 

concepts including MapReduce, Spark, NoSQL databases, 

and stream processing, structured according to the 

ACM/IEEE Computing Curricula guidelines [31]. 

5.2 Baseline Methods 

We compare the proposed MMKG system against three 

established approaches, with detailed technical 

specifications to ensure experimental fairness and 

replicability: 

5.2.1 Fixed MOOC Sequence (FMS) 

The FMS baseline implements a linear curriculum 

following Coursera's Big Data specialization structure 

[32].      
The system architecture consists of: 

 Content Management System: Django-based 

backend with PostgreSQL database storing 847 

learning resources across 23 topics 

 Assessment Engine: Automated quiz generation 

using Bloom's taxonomy levels, with immediate 

feedback but no adaptive sequencin 

 Progress Tracking: Simple completion-based 

https://onlinelibrary.wiley.com/doi/pdf/10.1111/infa.12441
https://hsi.arc.nasa.gov/publications/HFES_2006_Paper.pdf
https://www.tandfonline.com/doi/abs/10.1080/10447310802205776
https://rua.ua.es/dspace/bitstream/10045/125958/1/milosz-lujan-bardou-merceron-penafiel.pdf
https://www.tandfonline.com/doi/full/10.1080/15228959.2012.730415
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metrics without knowledge state modeling 

 User Interface: Standard MOOC interface with 

linear navigation, no personalization features 

Technical Configuration: 

 Database: PostgreSQL 13.4 with standard 

indexing 

 Backend: Django 4.1 with REST API endpoints 

 Frontend: React 18.2 with Material-UI 

components 

 Assessment: Fixed difficulty progression, 5-

question quizzes per topic 

 No machine learning components or adaptive 

algorithms 

5.2.2. Knowledge Tracing with Adaptive Sequencing 

(KTAS) 

The KTAS baseline employs Bayesian Knowledge 

Tracing [3] to adjust concept order while maintaining 

fixed modalities. The system architecture includes: 

 Knowledge Tracing Engine: Implementation of 

the four-parameter BKT model with parameters: 

P(L₀) = 0.1 (initial knowledge), P(T) = 0.3 

(learning rate), P(G) = 0.2 (guess probability), 

P(S) = 0.1 (slip probability) 

 Adaptive Sequencing: Prerequisite-based concept 

ordering using topological sorting with 

knowledge mastery thresholds (80% confidence) 

 Assessment Integration: Same IRT-based 

assessment framework as MMKG system for fair 

comparison 

 Resource Delivery: Fixed modality assignment 

(text-based explanations for all learners) 

Technical Configuration: 

 Knowledge Modeling: Python implementation 

using NumPy/SciPy for BKT calculations 

 Sequencing Algorithm: Modified Kahn's 

algorithm for topological sorting with mastery 

constraints 

 Database Schema: Same as MMKG system but 

without modality preference tables 

 Update Frequency: Knowledge state updates 

after each assessment item 

 No multimodal resource selection or cognitive 

load management 

5.2.3. Modality-Aware Recommender (MAR) 

The MAR baseline optimizes resource presentation 

formats based on learning style inventories [33] without 

concept-level adaptation. The system architecture features: 

Learning Style Assessment: Implementation of the 

Felder-Silverman Learning Style Index with 44-item 

questionnaire 

Modality Matching Engine: Rule-based system 

mapping learning styles to resource types: 

 Visual learners → diagrams and infographics 

(70% allocation) 

 Auditory learners → video lectures and podcasts 

(70% allocation) 

 Kinesthetic learners → interactive coding 

exercises (70% allocation) 

 Reading/writing learners → text-based materials 

(70% allocation) 

Content Delivery: Fixed concept sequence identical to 

FMS, but with personalized modality selection 

No knowledge tracing or adaptive sequencing 

capabilities 

Technical Configuration: 

 Learning Style Engine: Python implementation 

of FSLSI scoring algorithm 

 Resource Database: Same multimodal content as 

MMKG system (847 resources across 4 

modalities) 

 Recommendation Logic: Deterministic mapping 

based on dominant learning style 

 Assessment System: Same as FMS baseline with 

fixed progression 

 No reinforcement learning or dynamic adaptation 

mechanisms 

All systems were implemented on identical technical 

infrastructure: 

 Hardware: AWS EC2 t3.large instances (2 vCPU, 

8GB RAM) 

 Database: Neo4j 4.4 for graph storage, 

PostgreSQL 13.4 for relational data 

 Backend Framework: Python 3.9 with Django 

4.1 

 Frontend: React 18.2 with TypeScript 

 Monitoring: Identical logging and analytics 

collection across all systems 

This standardized infrastructure ensures that 

performance differences reflect pedagogical effectiveness 

rather than platform optimization. All systems logged 

identical interaction data for fair comparison of learning 

outcomes. 

5.3 Evaluation Metrics 

The study employs a multi-dimensional assessment 

framework: 

5.3.1. Learning Outcomes 

(1) Normalised learning gain: 𝐺 =
𝑝𝑜𝑠𝑡-𝑡𝑒𝑠𝑡−𝑝𝑟𝑒-𝑡𝑒𝑠𝑡

1−𝑝𝑟𝑒-𝑡𝑒𝑠𝑡
 

2) Conceptt mastery rate: Percentage of topics reaching 

https://www.fi.muni.cz/~xpelanek/publications/umuai-overview.pdf
http://www.bwgriffin.com/gsu/courses/edur7130/readings/individual_learning_style.pdf
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80% proficiency threshold 

(3) Knowledge retention: Delayed post-test scores after 

4 weeks 

5.3.2. Cognitive Efficiency 

(1)Cognitive load per concept: 𝐶𝐿𝑐 =
∑ 𝑇𝑛

𝑖=1 𝐿𝑋𝑖

𝑛
 where 

𝑛 is attempt count 

    (2)Error recovery rate: 𝐸𝑅𝑅 =
𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑠

𝑡𝑜𝑡𝑎𝑙 𝑒𝑟𝑟𝑜𝑟𝑠
 

5.3.3. Engagement Metrics 

(1) Modality adherence: 𝑀𝐴 =
∑ 𝑤𝑚𝑚∈𝑀𝑝

∑ 𝑤𝑚𝑚∈𝑀
 where 𝑀𝑝 

are preferred modalities 

    (2) Persistence time: Duration between system-

initiated breaks 

5.3.4. System Quality 

(1) Path coherence: 𝑃𝐶 =
∑ 𝑠𝑛

𝑖=2 𝑖𝑚(𝑐𝑖−1,𝑐𝑖)

𝑛−1
 measuring 

conceptual flow 

2) Adaptationn responsiveness: 𝐴𝑅 =
∑𝛥𝐾

∑𝛥𝑡
 measuring 

knowledge gain rate 

5.4 Implementation Details 

The MMKG system components were implemented as 

follows: 

5.4.1 Knowledge Graph Construction 

(1)Initial graph built from course syllabus using 

Stanford CoreNLP [34] for concept extraction 

(2) Prerequisite relationships validated by three 

domain experts (Fleiss’ κ = 0.82) 

(3)Multimodal resources annotated with estimated 

cognitive load using the CLT-M scale [35] 

5.4.2. Learner Modeling 

(1) Knowledge states estimated via IRT using 3PL 

model (Equation 1) 

(2)Learning styles classified using Felder-Silverman 

model [24] with k-means clustering (k=4) 

(3) Cognitive load predicted via Random Forest 

regression on eye-tracking features 

5.4.3. Reinforcement Learning Setup 

(1) Policy network: 3-layer GNN with 128-

dimensional hidden states 

(2) Reward weights: 𝛽1 = 0.4, 𝛽2 = 0.3, 𝛽3 =
0.2, 𝛽4 = 0.1 (Equation 5) 

(3) Training: Proximal Policy Optimization (PPO) with 

𝛾 = 0.9 discount factor 

The experiment followed a crossover design where 

control group participants accessed the MMKG system 

after completing the traditional course, enabling within-

subject comparisons while avoiding test contamination. 

All procedures were approved by the institutional review 

board (IRB-EDU-2023-015). 

6. Experimental Results 

The evaluation of our adaptive learning engine 

demonstrates significant improvements across multiple 

dimensions compared to baseline methods. This section 

presents quantitative results measuring learning outcomes, 

cognitive efficiency, and user experience, followed by 

qualitative analysis of the system’s adaptive behaviors. 

6.1 Learning Outcome Improvements 

The MMKG-driven system achieved superior 

knowledge acquisition compared to all baselines, with 

particularly strong gains for complex topics. As shown in 

Table 1, the experimental group showed 22.4% higher 

normalized learning gain than the fixed MOOC sequence 

(FMS) and 14.7% improvement over the knowledge 

tracing approach (KTAS). The modality-aware 

recommender (MAR) performed better than FMS but 

lagged behind our full system, confirming the importance 

of joint concept-modality optimization. 

Table 1. Comparative Learning Outcome Metrics Across 

Systems 

Metric 
MMKG 

(Ours) 
FMS KTAS MAR 

Normalized 

Gain 
0.68 0.45 0.53 0.58 

Mastery 

Rate 
82.3% 61.2% 72.1% 75.4% 

Retention (4-

week) 
78.5% 54.7% 67.2% 70.1% 

Complex 

Topic Gain 
0.59 0.32 0.41 0.45 

The advantage was most pronounced for conceptually 

challenging topics like distributed consensus algorithms 

(Paxos/Raft) and stream processing semantics, where the 

MMKG system’s ability to dynamically adjust both 

sequencing and modality proved particularly valuable. 

Figure 3 illustrates the correlation between predicted and 

actual knowledge gains across different concept difficulty 

levels, demonstrating the system’s accurate modeling of 

learning trajectories. 

https://link.springer.com/chapter/10.1007/978-3-319-10377-8_10
https://ajet.org.au/index.php/AJET/article/download/3084/1431
http://117.202.29.23:8080/jspui/bitstream/1/297/1/LEARNING%20AND%20TEACHING%20STYLES%20in%20Enginnering%20Education.pdf
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Figure 3. Predicted versus actual knowledge gain across 

concept difficulty levels, showing strong alignment with 

R²=0.87 

6.2 Cognitive Efficiency Metrics 

Our system successfully reduced cognitive overload 

while maintaining rigorous learning pace. NASA-TLX 

scores showed 18.2% lower cognitive load compared to 

FMS (p<0.01), with particularly significant reductions in 

mental demand (23.4%) and frustration (27.1%) subscales. 

Eye-tracking data revealed that pupils in the MMKG 

group maintained more stable dilation patterns (σ=0.82 vs 

1.24 in FMS), indicating better-managed cognitive strain. 

The error recovery rate (ERR) metric demonstrated the 

system’s effectiveness in addressing misconceptions. 

MMKG learners corrected 84.3% of errors within two 

attempts, compared to 62.7% for FMS and 73.9% for 

KTAS. This improvement stems from the system’s 

multimodal error remediation strategy, which 

automatically switches presentation formats after failed 

attempts - for example, replacing a textual explanation 

with an interactive visualization when initial 

understanding proves elusive. 

6.3 Adaptation Patterns and Path 

Characteristics 

Analysis of generated learning paths revealed several 

key adaptation behaviors: 

6.3.1 Cognitive Load Balancing 

The system dynamically interleaved heavy cognitive-

load topics (e.g., lambda architecture) with lighter 

reinforcement activities (e.g., multiple-choice quizzes on 

HDFS) to maintain optimal engagement. This resulted in 

32.7% more frequent difficulty adjustments than KTAS. 

6.3.2. Modality Scheduling 

 Visual learners received 58.3% more diagrammatic 

resources than the MAR baseline, while maintaining 

balanced cognitive load. Kinesthetic learners showed 

particularly strong engagement with the system’s 

interactive coding sandboxes, attempting 41.2% more 

optional exercises than other groups. 

6.3.3. Nonlinear Progression 

Contrary to fixed sequences, 63.4% of MMKG paths 

exhibited non-sequential jumps between related concepts 

(e.g., moving between Spark RDDs and Flink 

DataStreams) when the system detected relevant 

knowledge transfer opportunities. 

Figure 4 illustrates the system’s adaptive modality 

scheduling through a heatmap of resource selections 

across different learner profiles, showing clear 

differentiation based on cognitive styles and knowledge 

states. 

 

Figure 4. Resource modality distribution across learner 

profiles, showing adaptive scheduling based on cognitive styles 

and knowledge states 

6.4 User Experience and Satisfaction 

Participants rated the MMKG system significantly 

higher on usability (SUS=82.4 vs 68.1 for FMS) and path 

satisfaction (4.3/5 vs 3.1/5). Qualitative feedback 

highlighted appreciation for the “just-in-time” modality 

switching and the system’s ability to “sense when I’m 

stuck and try a different approach.” The most frequent 

positive comments referenced: - “Feels like having a 

personal tutor who knows how I learn best” - “Not getting 

overwhelmed even with difficult topics” - “Helps see 

connections between concepts I wouldn’t have noticed” 

Negative feedback primarily concerned initial 

calibration periods (average 17.2 minutes for the system 

to stabilize adaptations) and occasional over-reliance on 

preferred modalities (“I liked the diagrams but sometimes 
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needed more detailed text”). 

6.5 Ablation Study 

To isolate the contributions of key system components, 

we conducted controlled experiments with modified 

versions of our approach: 

Table 2. Ablation Study Results (Normalized Gain) 

Configuration 
Simple 

Topics 

Complex 

Topics 

Ove

rall 

Full MMKG 

System 
0.71 0.59 0.68 

Without Modality 

Adaptation 
0.69 0.47 0.61 

Without Cognitive 

Constraints 
0.65 0.51 0.60 

Static Knowledge 

Graph 
0.63 0.43 0.56 

The ablation study confirms that each component 

contributes meaningfully to overall performance, with 

modality adaptation proving particularly crucial for 

complex topics (21.3% drop when disabled). The 

cognitive load management module showed strongest 

impact on learner persistence, with unconstrained versions 

leading to 38.7% more frequent breaks. The dynamic 

knowledge graph updates accounted for 17.6% of the 

overall gain, primarily through improved prerequisite 

satisfaction. 

6.6 Reward Function Sensitivity Analysis 

To address reviewer concerns about reward function 

design, we conducted comprehensive sensitivity analysis 

across different weight combinations in Equation 6. The 

analysis varied each weight parameter βi within ±50% of 

the baseline values while keeping others constant. 

Table 3. Reward Function Sensitivity Analysis 

Weight 

Configuratio

n 

Learn

ing 

Gain 

Engage

ment 

Cognit

ive 

Load 

Over

all 

Scor

e 

Baseline 

(0.4,0.3,0.2,0.

1) 

0.68 4.2 3.1 0.72 

High 

Knowledge 

(0.6,0.2,0.1,0.

1) 

0.71 3.8 3.4 0.69 

High 

Engagement 

(0.2,0.5,0.2,0.

1) 

0.62 4.6 3.2 0.68 

High Load 

Penalty 

(0.3,0.2,0.4,0.

1) 

0.65 4.0 2.7 0.70 

Balanced 

(0.25,0.25,0.2

5,0.25) 

0.66 4.1 3.0 0.69 

 

The sensitivity analysis reveals that the system 

maintains robust performance across different weight 

configurations, with overall scores varying by less than 

6%. The baseline configuration achieves optimal balance, 

though slight improvements in specific metrics can be 

obtained by adjusting weights for particular learning 

objectives. The knowledge gain weight (β1 ) shows the 

strongest influence on learning outcomes, while the 

cognitive load penalty ( β3 ) most effectively manages 

learner stress levels. 

Statistical analysis using repeated measures ANOVA 

confirms that weight variations do not significantly impact 

overall system effectiveness (F(4,235) = 1.82, p = 0.127), 

demonstrating the framework's robustness to 

hyperparameter choices. 

6.7 Modality-Cognitive Load Interaction 

Analysis 

To investigate potential conflicts between modality 

preferences and cognitive load tolerance, we conducted a 

two-way ANOVA examining the interaction effects of 

preferred modality and cognitive load capacity on learning 

outcomes. 

Table 4. Modality-Cognitive Load Interaction Effects 

Modality 

Preference 

Low 

Cognitiv

e 

Capacity 

Medium 

Cognitiv

e 

Capacity 

High 

Cognitiv

e 

Capacity 

Visual 
0.58 ± 

0.12 

0.67 ± 

0.09 

0.74 ± 

0.08 

Auditory 
0.52 ± 

0.14 

0.63 ± 

0.11 

0.71 ± 

0.09 

Kinesthetic 
0.61 ± 

0.13 

0.69 ± 

0.10 

0.76 ± 

0.07 

Reading/Writin

g 

0.55 ± 

0.11 

0.65 ± 

0.08 

0.72 ± 

0.06 

 

The analysis reveals a significant main effect for 

cognitive capacity (F(2,228) = 47.3, p < 0.001) and 

modality preference (F(3,228) = 8.7, p < 0.001), with a 

notable interaction effect (F(6,228) = 3.2, p = 0.005). 

Kinesthetic learners show the strongest performance 

across all cognitive capacity levels, while auditory 
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learners demonstrate the greatest sensitivity to cognitive 

load constraints. 

Post-hoc analysis using Tukey's HSD reveals that the 

system's adaptive modality selection successfully 

mitigates cognitive overload. When learners with high 

visual preference but low cognitive capacity were 

automatically provided with simplified visual materials, 

their performance (0.58) approached that of high-capacity 

visual learners using complex materials (0.74). This 

demonstrates the system's effectiveness in balancing 

affective preferences with cognitive constraints. 

Moderated regression analysis confirms that the 

system's cognitive load management significantly 

moderates the relationship between modality preference 

and learning outcomes (β = 0.34, p < 0.01), explaining an 

additional 12% of variance beyond main effects alone. 

7. Discussion and Future Work 

7.1 Limitations and Challenges of the 

Proposed Adaptive Learning Engine 

While the experimental results demonstrate significant 

improvements over baseline methods, several limitations 

warrant discussion. First, the system’s effectiveness 

depends heavily on the quality and coverage of the initial 

multimodal knowledge graph. Gaps in concept-resource 

mappings or inaccurate prerequisite relationships can 

propagate through the adaptation process, potentially 

leading to suboptimal path recommendations. This 

challenge becomes particularly acute in rapidly evolving 

domains like big data, where new technologies and 

paradigms emerge frequently [36]. Future iterations could 

incorporate automated knowledge graph expansion 

techniques to address this limitation. 

Second, the current cognitive load estimation relies on 

a combination of physiological measures and self-reports, 

which may not capture all dimensions of cognitive strain 

equally. Eye-tracking metrics, while informative, 

primarily reflect visual processing load and may 

underestimate the cognitive demands of abstract reasoning 

tasks [37]. Developing more comprehensive cognitive 

state models that integrate additional biometric signals 

(e.g., EEG, fNIRS) could provide a more holistic view of 

learner engagement and mental effort. 

Third, the reinforcement learning framework requires 

substantial interaction data to converge on effective 

policies, creating a cold-start problem for new learners or 

rare learning contexts. Although we employed transfer 

learning techniques to mitigate this issue, the system still 

exhibits reduced adaptation quality during initial sessions 

(as noted in user feedback). Hybrid approaches that 

combine RL with case-based reasoning or symbolic 

planning might offer more robust performance in data-

sparse scenarios [38]. 

7.1.1 Scalability Considerations 

The current system was evaluated on course-level 

MMKGs containing approximately 850 resources across 

23 concepts. However, real-world educational platforms 

often involve knowledge graphs with thousands of 

concepts and tens of thousands of resources. To address 

scalability concerns, we propose several strategies: 

Graph Pruning and Sampling: For large-scale 

deployment, the system can employ dynamic graph 

pruning techniques that maintain only the most relevant 

subgraph for each learner. We implement a relevance-

based sampling algorithm: 

𝑃(𝑐𝑖 ∈ 𝐺pruned) =
exp(relevance(𝑐𝑖 , 𝐿𝑡))

∑𝑗 exp (relevance(𝑐𝑗 , 𝐿𝑡))
 (16) 

where relevance(ci, Lt)  measures the importance of 

concept ci  given learner state  Lt . This reduces 

computational complexity from O(|V|²) to O(k²) where k 

<< |V|. 

Hierarchical Graph Abstraction: Large knowledge 

graphs can be organized hierarchically, with high-level 

concepts serving as cluster representatives. The system 

first navigates at the cluster level before drilling down to 

specific concepts: 

𝐺hierarchical = {𝐺level0 , 𝐺level1 , … , 𝐺level𝑛} (17) 

where each level represents increasing granularity. This 

approach reduces the search space exponentially while 

maintaining semantic coherence. 

Distributed Processing: For massive graphs, the system 

can be distributed across multiple nodes using graph 

partitioning algorithms. Each node maintains a subgraph 

and communicates learner state updates through message 

passing: 

Updateglobal = ∑ 𝑤𝑖
𝑁
𝑖=1 ⋅ Updatelocal𝑖

 (18) 

where wi represents the weight of partition i based on 

learner activity. 

Computational Complexity Analysis: The current 

GNN-based approach has complexity O(|E| · d · L) where 

|E| is the number of edges, d is the embedding dimension, 

and L is the number of layers. For graphs with millions of 

edges, this becomes computationally prohibitive. We 

propose using GraphSAINT sampling [39] to reduce 

complexity to O(k · d · L) where k is the sample size, 

maintaining 95% of full-graph performance with 10% of 

the computational cost. 

7.1.2 Cross-Population Generalization 

To address concerns about generalization across learner 

populations, we conducted additional analysis on model 

transferability across different demographic groups and 

educational contexts: 

Table 5. Cross-Population Generalization Analysis 

https://ieeexplore.ieee.org/abstract/document/6879372/
https://kops.uni-konstanz.de/bitstream/123456789/38076/3/Zagermann_0-399762.pdf
https://dl.acm.org/doi/pdf/10.1145/3469440
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Source 

Population 

Target 

Populatio

n 

Transfe

r 

Accurac

y 

Adaptatio

n Time 

Computer 

Science 

Majors 

Engineerin

g Majors 
0.78 12.3 min 

Undergradua

te Students 

Graduate 

Students 
0.82 9.7 min 

Native 

English 

Speakers 

Non-

Native 

Speakers 

0.71 15.8 min 

High-

Performing 

Students 

Struggling 

Students 
0.69 18.2 min 

 

The analysis reveals that while the system maintains 

reasonable performance across populations, certain 

demographic transitions require longer adaptation periods. 

To improve cross-population generalization, we 

implement domain adaptation techniques: 

𝐿adaptation = 𝐿source + λ ⋅ 𝐿domain + μ ⋅ 𝐿target (19) 

where Ldomain  is a domain adversarial loss that 

encourages population-invariant representations, and λ, μ 

balance the different objectives. 

7.2 Ethical Considerations and Mitigation 

Strategies 

The collection and utilization of multimodal learning 

data raises important ethical questions regarding privacy, 

algorithmic bias, and learner autonomy. The system’s 

reliance on detailed behavioral tracking—including eye 

movements and interaction patterns—necessitates careful 

data governance protocols. We implemented several 

safeguards: (1) granular consent mechanisms allowing 

learners to opt out of specific data collection modalities, 

(2) differential privacy techniques for aggregating 

sensitive metrics, and (3) regular bias audits of the 

recommendation algorithms [39]. 

A less obvious but equally critical concern involves the 

potential for over-adaptation, where the system’s 

personalization might inadvertently limit learners’ 

exposure to diverse perspectives and challenging 

modalities. Research suggests that always catering to 

preferences can hinder the development of versatile 

learning strategies [40]. To address this, we introduced 

controlled randomness in modality selection (Equation 8) 

and periodic “stretch assignments” that deliberately push 

learners slightly beyond their comfort zones while 

maintaining manageable cognitive load. 

The system’s knowledge graph structure also carries 

implicit epistemological assumptions about how concepts 

should be organized and sequenced. These choices, while 

informed by domain experts, may not align with all 

cultural or pedagogical perspectives [41]. Future work 

should explore participatory design methods to ensure the 

framework accommodates diverse learning traditions and 

knowledge systems. 

7.3 Future Directions and Broader 

Applications 

The principles underlying our adaptive learning engine 

extend beyond big data education, suggesting several 

promising research directions. One avenue involves 

applying the MMKG framework to domains with 

particularly complex concept interdependencies, such as 

medical education or legal training. The system’s ability to 

model nonlinear learning paths could prove valuable in 

these fields, where mastery often requires navigating 

intricate networks of prerequisite knowledge [42]. 

Another direction explores the integration of generative 

AI capabilities to dynamically create personalized 

learning resources. Rather than relying solely on pre-

existing materials, future systems could synthesize 

explanations, examples, and exercises tailored to 

individual knowledge gaps and preferred modalities [43]. 

This approach would complement the current resource 

recommendation mechanism while addressing coverage 

limitations in the knowledge graph. 

The framework’s multimodal adaptation strategies also 

show promise for supporting learners with neurodiverse 

conditions. Preliminary studies suggest that customizable 

modality presentations can significantly improve 

accessibility for individuals with ADHD, dyslexia, or 

autism spectrum traits [44]. Extending our work to 

explicitly incorporate neurodiversity-aware adaptation 

could make complex technical education more inclusive. 

Future research should also investigate the integration 

of emerging technologies such as virtual and augmented 

reality into the multimodal framework. These immersive 

modalities could provide particularly powerful learning 

experiences for spatial and kinesthetic learners, especially 

in domains requiring 3D visualization or hands-on 

manipulation of complex systems. 

Finally, the system’s underlying architecture could be 

repurposed for workforce upskilling and professional 

development contexts. Many industries face challenges in 

efficiently transitioning employees to new technologies 

and methodologies [45]. The ability to rapidly construct 

domain-specific knowledge graphs and adapt to varied 

professional backgrounds could accelerate reskilling 

initiatives while reducing cognitive overload during career 

transitions. 

These future directions collectively highlight the 

broader potential of combining structured knowledge 

representation with multimodal adaptation. As the 

https://link.springer.com/content/pdf/10.1007/s43681-021-00096-7.pdf
https://www.researchgate.net/profile/Oussama-Elwarrak/publication/376091711_EMBRACING_THE_FUTURE_OF_PERSONALIZED_LEARNING_THE_TRANSFORMATIVE_IMPACT_OF_RECOMMENDATION_SYSTEMS_IN_ONLINE_EDUCATION/links/656f213e5985071c7bf06c2a/EMBRACING-THE-FUTURE-OF-PERSONALIZED-LEARNING-THE-TRANSFORMATIVE-IMPACT-OF-RECOMMENDATION-SYSTEMS-IN-ONLINE-EDUCATION.pdf
https://www.scielo.cl/scielo.php?pid=S0718-27242013000300005&script=sci_arttext&tlng=en
https://www.academia.edu/download/81165688/medu.pdf
https://www.frontiersin.org/journals/artificial-intelligence/articles/10.3389/frai.2024.1460651/pdf
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=5f79b776b70ad1e8c08efe041b44e8bb631f98a0
https://link.springer.com/chapter/10.1007/978-3-030-22341-0_3
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framework evolves, maintaining focus on both 

pedagogical effectiveness and human-centered design 

principles will be essential for realizing its full benefits 

across diverse learning contexts. 

8. Conclusion 

The proposed adaptive learning framework 

demonstrates that integrating multimodal knowledge 

graphs with reinforcement learning can significantly 

enhance personalized education in complex domains like 

big data. By simultaneously optimizing knowledge 

progression, cognitive load management, and modality 

selection, the system addresses critical limitations of 

conventional adaptive platforms that treat these 

dimensions in isolation. Experimental results confirm 

substantial improvements in learning efficiency, 

knowledge retention, and engagement compared to static 

or partially adaptive approaches. 

The framework's success stems from its unified 

treatment of the cognitive-modality-knowledge triad, 

enabled by dynamic graph neural networks that propagate 

learner states across the knowledge structure. The 

integration of explainable AI mechanisms provides 

transparency in decision-making processes, while 

comprehensive transfer learning strategies effectively 

address cold-start challenges. The system's ability to 

balance immediate learning gains with long-term 

knowledge, evidenced by strong retention scores, 

highlights the value of its reinforcement learning 

foundation. 

While the current implementation focuses on big data 

education, the underlying architecture offers generalizable 

principles for adaptive learning across technical domains. 

The demonstrated benefits of multimodal resource 

scheduling and cognitive-aware path optimization suggest 

promising applications in other complex subjects 

requiring conceptual integration and practical application. 

Future extensions could explore automated knowledge 

graph expansion and generative content creation to further 

enhance adaptability. 

The ethical considerations raised by such personalized 

systems—particularly regarding data privacy and 

algorithmic bias—have been addressed through concrete 

technical implementations rather than conceptual 

discussions alone. The differential privacy mechanisms, 

bias auditing systems, and learner autonomy controls 

provide a foundation for responsible AI in education that 

can be adapted to other contexts. 

As educational technology continues evolving, 

frameworks like this demonstrate how artificial 

intelligence can augment human learning without 

replacing the essential role of thoughtful pedagogy. The 

system’s success lies not in automating education but in 

leveraging computational methods to better support 

diverse learning needs and cognitive styles. This balanced 

perspective on technology-enhanced learning points 

toward future developments that prioritize both efficiency 

and human-centered design. 
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